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Abstract 

Background: Disease risk and incidence between males and females reveal differences, and sex is an important 
component of any investigation of the determinants of phenotypes or disease etiology. Further striking differences 
between men and women are known, for instance, at the metabolic level. The extent to which men and women 
vary at the level of the epigenome, however, is not well documented. DNA methylation is the best known epigenetic 
mechanism to date.

Results: In order to shed light on epigenetic differences, we compared autosomal DNA methylation levels between 
men and women in blood in a large prospective European cohort of 1799 subjects, and replicated our findings in 
three independent European cohorts. We identified and validated 1184 CpG sites to be differentially methylated 
between men and women and observed that these CpG sites were distributed across all autosomes. We showed that 
some of the differentially methylated loci also exhibit differential gene expression between men and women. Finally, 
we found that the differentially methylated loci are enriched among imprinted genes, and that their genomic location 
in the genome is concentrated in CpG island shores.

Conclusion: Our epigenome‑wide association study indicates that differences between men and women are so 
substantial that they should be considered in design and analyses of future studies.
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Background
There is no doubt that men and women are different. Dif-
ferences exist in risk and incidence of diseases between 
males and females, and sex is an important component 
of any investigation of the determinants of phenotype 
or disease etiology [1, 2]. At the molecular level, it has 
been shown that metabolic profiles of men and women 

differ substantially [3], whereas genomic differences 
on the SNP level are not reproducible [4]. However, it 
remains largely unknown to what extent men and women 
differ at the epigenomic level. Shedding light on the dif-
ferences between men and women in terms of DNA 
methylation (DNAm) is particularly important in con-
ducting epigenome-wide association studies (EWAS). 
Insights on extent and distribution of sex-dependent 
DNAm can potentially improve the identification of dis-
ease- or phenotype-related methylation signatures.

The relation between DNAm and sex in humans has 
been studied previously [5–8]. These studies, however, 
were limited in their scope and in their statistical power. 
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In particular, several earlier studies considered ‘global’ 
measures of DNAm that captured repeated, noncoding 
regions in the genome (e.g., LINE-1 and Alu repeats [5, 
9–12]). Others have focused on specific pathways or loci 
(e.g., cancer sites [13], specific genes [11, 14], low num-
bers of CpGs across the genome [15]), or restricted their 
analysis to certain chromosomes [16, 17].

In the current study, we aimed to systematically analyze 
whole blood DNAm differences between sexes across the 
genome in a large population-based cohort, and to vali-
date our results in three additional cohorts. In addition, 
we sought to characterize the genomic loci that show 
substantial DNAm differences between men and women 
by means of different enrichment analyses and expres-
sion analysis.

Results
Discovery of sex‑methylation associations
In our discovery sample from the population-based 
KORA F4 study, we sought to identify DNAm differences 
between 877 men and 922 women at 470,920 autosomal 
CpGs. Details on the cohort are given in Table 1. Associ-
ation analysis of normalized methylation data (beta-val-
ues) from 391,885 CpGs revealed 11,010 sex-methylation 
associations (SMAs) (p < 1.26E−07) with some of them 
being highly significant (p < 1E−300). The sex-associated 
CpGs were spread across the autosomal genome (Fig. 1). 
These and all subsequent significance levels were cor-
rected for multiple testing according to the Bonferroni 
method. Additional file  1 provides a flow-chart of our 
analyses.

Validation of sex‑methylation associations in whole blood
We took the set of 11,010 SMAs forward to replication in 
three different cohorts coming from three different popu-
lations in three different geographic locations (Table  1, 
further details in the methods section). The replica-
tion results were meta-analyzed using a random-effects 
model, revealing 1184 CpGs (p < 4.89E−06). Effect sizes 
of revealed for these CpGs are in a range between −0.89 
and 0.73 (given as theta values in Additional file 2). The 
histogram in Additional file 2 shows the frequency distri-
bution of the effect sizes. Of note, the majority of the not 
replicated SMAs still showed consistent effect direction in 
the replication as in the discovery step (p < 1E−200, Bino-
mial test), and SMAs were highly correlated between dis-
covery sample and each of the three replication cohorts 
(correlation coefficients between KORA F4 and KORA 
F3, ALSPAC, EPIC, respectively, were 0.88, 0.65, 0.70), 
suggesting that the majority of the discovered SMAs are 
unlikely to be false positives (Fig. 2; Additional file 2).

Validation in buccal epithelial tissue
Since the identification of SMAs in whole blood may be 
biased by cell-type composition or other tissue-specific 
biases, we compared the SMAs found in KORA F4 to a 
public dataset on DNAm measured in buccal epithelial cells 
from 15-year-old adolescents (n = 109, 60 % females) with 
the Illumina Infinium HumanMethylation27 BeadChip [18]. 
Since the buccal cells study was performed on the Human-
Methylation27 BeadChip, only a subset of the sites were 
measured in both studies and passed the KORA quality cri-
teria (see “Methods”): a set of 22,773 CpGs remained. Out 
of these 22,773 CpGs, 912 were significantly associated with 
sex in KORA F4, and 96 CpGs were significantly associ-
ated with sex in the buccal cells study (both after Bonferroni 
with n = 22,773, resulting significance level p = 2.20E−6). 
Despite the low rate of associations observed in the buccal 
cells study, we note that out of the 96 sex-associated CpGs in 
the buccal cells study, 16 CpGs were also associated with sex 
in KORA F4 (Additional file 3) (p value <2.4E−07, hyper-
geometric test). Notably, most associations in the KORA 
F4 were not replicated in the buccal cells study, potentially 
due to the limited power, with the sample size being small 
(n = 109), and due to the differences between the popula-
tions, particularly the age distribution of the subjects.

Enrichment of SMAs in specific CpG island locations
We further tested whether there are specific regions 
in the genome that are enriched for SMAs by inspect-
ing the tendency of SMAs to occur at specific locations 
with respect to CpG islands (CGIs). Since correlations 
between CpG sites can inflate the p value of an enrich-
ment analysis, we randomly picked each site to partici-
pate in this analysis with probability 0.2. A set of 78,734 
sites was therefore randomly chosen, out of which 231 
sites are a subset of the 1184 CpGs identified in the meta-
analysis. Table  2 shows a clear concentration of SMAs 
in CGI shores (north and south combined; Pearson Chi 
square test for overrepresentation, p value <1E−16), 
as opposed to a lower rate of SMAs in CGIs, shelves 
(north and south combined) and open sea CpG sites [19]. 
When excluding CGI shores from the test, there was no 
longer significance for any enrichment of SMAs among 
the remaining CGI locations (Pearson Chi square test, p 
value 0.75). These enrichment test results imply that the 
SMAs are overrepresented in the CGI shores.

Enrichment of sex‑methylation associations (SMAs) 
in imprinted genes
In order to investigate the distribution of SMAs across the 
genome further, we explored the possibility that DNAm 
varies in imprinted genes between sexes. Imprinted genes 
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have one silenced copy through DNAm in a parent-of-ori-
gin-specific manner; some examples of relations between 
autosomal DNAm patterns and the sex of the carrier of the 
imprinted gene are already known [20, 21]. We observed 
that SMAs tend to be of higher significance among CpGs 
at known imprinted genes compared to non-imprinted 

genes (Spearman correlation 0.025, p = 4.0E−04 consid-
ering discovery p values; 0.019, p = 8.0E−03 considering 
replication p values). Particularly, there were 3816 genes 
that passed the threshold for genome-wide significance in 
KORA F4 (where the best CpG near the gene had genome-
wide significant p value), while out of those, 16 were 
imprinted genes (p value 0.008, hypergeometric test). Of 
these 16 genes, 10 also had significant SMAs in the meta-
analysis; these were GNAS, INPP5F, KCNQ1DN, GRB10, 
KCNQ1, DLGAP2, DLK1, PPP1R9A, MEG3, and PLAGL1. 
This result suggests that imprinted genes tend to harbor 
sex-specific CpGs more often than non-imprinted genes.

Enrichment for GO terms among the SMAs
With the aid of gene ontology (GO) terms, we ana-
lyzed the genes annotated to the sex-associated CpGs 
to identify common biological roles or processes in 

Fig. 1 Genome‑wide sex differences in DNAm across the autosomes in the discovery study KORA F4 (Manhattan plot). Chromosomes (autosomes) 
are represented by alternating colors with the lighter color per chromosome representing hypermethylated CpGs and the darker color hypomethyl‑
ated CpGs (male versus female). The red line represents the significance level of 1.26E−07

Fig. 2 Correlations between SMAs identified in KORA F4 and the respective associations in each replication study. Each point corresponds to one 
CpG site. SMAs in the discovery sample KORA F4 are plotted against SMAs in the three replication studies, with a KORA F4 against KORA F3, b KORA 
F4 against ALSPAC, c KORA F4 against EPICOR. Note that only the CpGs that were significant in KORA F4 and subsequently taken to replication are 
plotted, which results in the gap in the middle of the graphs

Table 2 Distribution and  enrichment of  sex-methylation 
associations (SMAs) among different CpG regions

a Location with respect to the CGI: shore-0 to 2 kb from CGI, shelf-2 to 4 kb from 
CGI; north-upstream, south-downstream [19]
b North and south shores combined

CpG regiona Island Shoresb Shelf Open sea Total

No. of CpG probes 26,159 18,888 7203 26,484 78,734

Significant SMAs 51 97 19 64 231
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which the products of these genes might be involved. 
GO term-enrichment test revealed three significantly 
enriched GO terms among the genes annotated to 
the 1184 meta-analysis hits compared with the 19,170 
genes annotated to the CpGs that went into our analy-
sis in KORA F4. These GO terms were ‘negative regu-
lation of glycolysis,’ ‘negative regulation of systemic 
arterial blood pressure,’ and ‘response to protozoan’ 
(Table 3).

Enrichment of SMAs in sex hormone‑related genes
Among the genes annotated to CpG sites with significant 
SMAs, we sought to explore the enrichment of genes 
involved in sex hormone biosynthesis, transport, recep-
tors, genes of other hormones with sexual dimorphisms, 
as well as genes known to be involved in disorders of 
sexual development (identified by OMIM search [22]), 
excluding those located on X and Y chromosomes. A list 
of the genes considered for this analysis is given in Addi-
tional file 4. No significant enrichment among the SMAs 
was found for these genes (hypergeometric test, p value 
0.41).

Association between SMAs and expression levels
To explore the biological consequences of the 1184 sig-
nificant SMAs, we tested whether there were differences 
in mRNA expression levels of 16,904 genes associated 
with both DNAm at the validated CpGs and sex in KORA 
F4. We considered genes 1  Mb around each SMA and 
identified 2 CpG-expression associations in the discov-
ery sample from KORA F4 (p < 8.55E−08). The effects of 
methylation and sex on the mRNA expression level were 
negative, i.e., expression appeared to be higher both with 
lower methylation values and female sex. These two asso-
ciations encompassed two genes: the cytokine-inducible 
SH2-containing protein gene (CISH); and the RAB23, 
member RAS oncogene family gene (RAB23) (Table 4).

Discussion
We characterized sex differences in autosomal DNAm in 
a large population-based European sample and identified 
11,010 sex-methylation associations (SMAs) after filter-
ing for the highest associated CpG site per gene. Of these, 
1184 were validated in a meta-analysis of additional three 
independent replication cohorts. The identified CpGs 

Table 3 Enriched GO terms among the sex-associated CpGs from the meta-analysis

a p value for enrichment, Bonferroni-corrected significance level of 3.08E−08
b Genes annotated to the GO term restricted to those annotated to significant SMAs in KORA F4
c Number of CpG probes associated with each gene, according to Illumina’s annotation file; enrichment tests were corrected for the probe numbers (see “Methods”)

GO ID GO term p valuea Geneb No. of CpG probesc

GO:0045820 Negative regulation of glycolysis 3.51E−07 HDAC4 393

IER3 39

FBP1 14

GO:0003085 Negative regulation of systemic arterial blood pressure 1.81E−06 ADRB1 8

CALCA 40

SOD2 7

IER3 39

BBS4 4

GO:0001562 Response to protozoan 2.69E−06 SLC11A1 20

IL12B 12

IER3 39

Table 4 Significant associations between SMAs and mRNA expression levels in KORA F4

a Gene annotation according to expression (not to CpG sites!)
b Beta estimate for the model expression = b0 + b1 × sex + b2 × methylation + e
c Bonferroni-corrected significance level of 8.55E−08
d Genomic distance between CpG and the matched gene

Probe ID  
expression

Probe ID  
methylation

est.b p valuec Methylation Sex Dist. CpG‑gene (bp)d Matched 
genea

est.b p value est.c p value

ILMN_1738207 cg01048561 0.16 9.85E−08 −0.03 0.03 −0.82 7.25E−08 99,832 CISH

ILMN_2346997 cg16616022 0.14 3.02E−07 −0.06 0.03 −1.70 8.16E−08 100,699 RAB23
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were enriched in CGI shores, in imprinted genes, with 
three GO terms, but not in sex hormone-related genes.

Sex‑specific methylation patterns
We identified marked differences in locus-specific DNA 
methylation between men and women throughout the 
autosomes with the largest proportion of effect sizes rang-
ing between 0.5 and 1.5, but also a considerable proportion 
with substantial effect sizes (−0.89 to 0.73 in the meta-anal-
ysis). This is consistent with previous findings of sex-specific 
DNA methylation patterns. For instance, Liu et al. explored 
DNAm at 20,493 CpG sites in a small alcohol-abuse study 
(n =  197), identifying one gene on chromosome 4 to be 
significantly differentially methylated between men and 
women [9]. Furthermore, a recent study with main focus on 
the heritability and repeatability of DNAm in whole blood 
found 1687 CpGs associated with sex [23]. There is a signifi-
cant overlap between that study and our results: 213 of the 
1687 CpGs previously reported as being associated with sex 
are among the hits identified in the meta-analysis reported 
here (p value <1E−17, hypergeometric test). Inoshita et al. 
reported 292 discovery hits in peripheral blood of which we 
find 41 among our meta-analysis hits (25 %) and 228 among 
our discovery hits (2  %) [24]. As the publication does not 
provide a list of 98 replicated CpGs, a comparison between 
replicated results of their and our hits was not possible. To 
extend the comparison beyond blood, we compared our 
results with two studies with brain samples that were also 
analyzed with the 450-k chip. The intersection with discov-
ery hits in the prefrontal cortex after correction for multiple 
testing from Xu et al. were only 2 and 3 % compared with 
our discovery and meta-analysis, respectively [25]. Of note, 
the study by Xu et  al. included only 46 subjects. This fact 
might explain the little overlap. Spiers and co-workers pub-
lished results on DNAm in fetal brain of which 14 and 18 % 
of their hits overlap with our discovery and meta-analysis 
hits, respectively [26].

Moreover, we looked at comparisons to DNAm 
changes associated with diabetes and with smoking as an 
example of environmental influence on DNAm. The inci-
dent diabetes-associated CpGs were all not significant in 
our data [27]. Among the 32 CpGs associated with smok-
ing status, the majority was not significant in our results, 
i.e., 22 CpGs, whereas nine were significant in our KORA 
F4 results, two in KORA F3 and F4, one of her CpGs was 
excluded from our analysis [28]. Thus, none of the hits of 
the smoking study survived significance level in our repli-
cation or meta-analysis.

Since the four populations examined in our study 
were rather heterogeneous, particularly in terms of age 
and genetic background, the large number of replicated 

SMAs indicates that the majority of DNAm differences 
between the sexes are stable over time and independent 
of geographic origin.

SMAs are found to be enriched in CpG island shores 
and imprinted genes
Our results on the local agglomeration of CpGs revealed 
an enrichment of SMAs in CGI shores. It is thought 
that methylation of CpGs results in different functional 
consequences depending on their genetic location. For 
example, CpGs in the gene body are thought to be related 
to regulation of the gene’s expression, whereas CpGs in a 
gene desert are thought to contribute to genomic stabil-
ity [29]. With regard to CGI shores, methylation of these 
features seems to regulate gene expression, possibly by 
silencing effects [30]. However, according to Liu et al., a 
CpG location in genetic region is only a weak approxi-
mation to its functional consequence [31], which may 
explain the low number of gene expression differences 
linked to sex-specific DNAm in our study.

Imprinting is a phenomenon of monoallelic gene 
silencing through DNAm in a parent-of-origin-specific 
manner [32]. DNAm differences in imprinted genes have 
been widely reported [33–37]; some studies showed sex-
specific effects of these DNAm differences [20, 21]. Look-
ing systematically at differences of DNAm between males 
and females at imprinted genes, we observed an enrich-
ment of these 10 imprinted genes among significant 
SMAs in the meta-analysis: GNAS, INPP5F, KCNQ1DN, 
GRB10, KCNQ1, DLGAP2, DLK1, PPP1R9A, MEG3, and 
PLAGL1. Full names of these genes and those addition-
ally found in the discovery study are listed in Additional 
file  5. Although examples of sex-specific DNAm differ-
ences in imprinted genes have been reported, these dif-
ferences seem to be unknown for the imprinted genes 
reported here.

Three GO terms were enriched for SMAs
To achieve a more functional interpretation of the SMAs, 
enrichment was observed for three GO terms among the 
genes annotated to the CpGs in our meta-analysis: ‘nega-
tive regulation of glycolysis,’ ‘negative regulation of sys-
temic arterial blood pressure,’ and ‘response to protozoan.’ 
Regarding the regulation of glycolysis, there are indica-
tions of differences between men and women in terms 
of glucose metabolism in the literature [38, 39]. Also, sex 
differences in the regulation of the arterial blood pressure 
are reported [40, 41]. These complementary strands of 
evidence suggest that sex-associated differences in DNAm 
may explain some of the underlying discordance in these, 
and possibly other traits and diseases.
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The relationship of sex hormones and DNA methylation
An analysis for enrichment of genes related to sex hor-
mone pathways (e.g., synthesis enzymes) revealed 
nothing of note in our data, suggesting that sex hormone-
related autosomal genes show no sex-dependent DNAm 
differences. Sex hormones may, however, play an impor-
tant role in determining DNAm levels; steroid hormones 
might mediate the transcriptional effects of co-regulatory 
complexes that associate with epigenetic modifiers [42]. 
Sex hormones might also exert regulatory effects on 
DNAm via downregulation of DNA methyltransferases 
expression in certain tissues [43]. Our observations of 
sex-dependent DNAm differences may reflect the evi-
dence that steroidal hormones can influence DNAm, 
rather than vice versa.

Sex‑associated methylation alters mRNA expression 
at some loci
Two genes, CISH and RAB23, showed significant DNAm-
expression associations between men and women in 
the KORA F4 discovery sample. CISH and RAB23 both 
exhibited lower levels of mRNA in women compared to 
men.

The function of RAB23 in humans is not completely 
unraveled yet, but it is known that this small GTPase 
acts as a negative regulator of the hedgehog pathway [44, 
45]. Hedgehog signaling has a crucial role in response to 
injury, tissue stress, healing, and regeneration by helping 
to maintain and expand somatic stem cell populations 
[46]. Thus, hedgehog signaling imperatively needs to be 
tightly regulated. The relevance of sex-specific regulation 
of gene expression of this locus is unclear.

CISH is a member of the SOCS family and, together 
with SOCS1, 2, and 3, exhibits inhibitory functions as 
negative feedback to the JAK-STAT signaling pathway, 
triggered by cytokines like IL-2 and other stimuli [47–
49]. This regulation is related to regulatory T-cell func-
tion and involved in immune polarization. Aberrations in 
the JAK-STAT pathway may be involved in hematopoietic 
disorders, autoimmune and inflammatory diseases [48], 
and affect susceptibility to infectious diseases [47, 49, 50].

Indeed, many infectious diseases appear to be more 
common in males that in females [51], but autoimmune 
diseases affect more females than males [52]. Thus, we 
hypothesize that DNAm might be a possible contributor 
to immunologic differences between the sexes.

Regarding the low number of genes expression of which 
was associated with differential DNAm in our study, one 
should have in mind that the consequences of changes in 
DNAm cover a much broader spectrum including effects 
in trans and genomic stability, for instance.

Strength and limitations
Important strengths of this study are the relatively large 
sample size and replication in several independent stud-
ies. In addition, validation was conducted in another tis-
sue. Furthermore, we implemented a rather stringent and 
conservative threshold for statistical significance so that 
we likely underestimated the number of SMAs reported. 
Both the comprehensiveness in design along with several 
in-depth downstream analyses strengthens our study.

Some limitations arise from the methodology of the 
Illumina Infinium HumanMethlation450 BeadChip 
which covers only 1.7  % of known CpG sites across the 
genome, rather than more comprehensive sequence-
based approaches. However, the 450-k chip is currently 
the most suitable method for high-throughput measure-
ments for large epidemiologic studies in terms of sample 
throughput and expenses, and the chip serves a purpose 
in identifying differences in DNAm at the group level, 
despite its widely recognized technical limitations and 
idiosyncrasies.

Blood is an easily accessible source of DNA in epidemi-
ologic studies, but tissue-specificity is an important issue 
when analyzing DNAm. Blood may function as surrogate 
tissue for systemic constitutional DNAm differences, but 
may not necessarily mirror specific changes in other tis-
sues [29]. We assessed tissue specificity by comparing our 
results to a study in buccal cells. Despite the low rate of 
associations observed in the buccal data, out of the 96 
sex-associated CpGs in the buccal data, 16 CpGs were 
also associated with sex in KORA F4. However, we must 
underline that potential sex-related differences in white 
blood cell proportions might not be captured by the 
applied estimation method and may thus confound our 
analysis to some extent.

Conclusion
We identified 1184 CpGs showing stable DNA methyla-
tion differences between men and women in four Euro-
pean cohorts. These sites were found to be enriched at 
CGI shores and at imprinted genes. Furthermore, we 
observed enrichment for three GO terms. From these 
results, we conclude that sex-dependent DNAm may be 
implicated in the observed sex discordance in various 
traits and diseases. Functional associations were dem-
onstrated through mRNA expression analysis, which 
revealed two genes with significant sex- and DNAm-
dependent expression differences, namely, CISH and 
RAB23.

Based on the substantial DNAm differences we found 
between men and women, we advocate that greater 
attention should be paid to sex differences in epigenetic 
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studies. Further work should be conducted to establish 
whether the extensive catalog of sex-associated DNAm 
differences observed are mediating the known sex dis-
cordance seen in many traits and diseases.

Methods
Study populations
Discovery
For the identification of SMAs, we used KORA F4 as the 
discovery sample and meta-analyzed the results from 
KORA F3, ALSPAC, and EPICOR.

KORA (Cooperative Health Research in the Region of 
Augsburg) is a population-based research platform with 
subsequent follow-up studies in the fields of epidemiol-
ogy, health economics, and health care research [53]. 
Four surveys were conducted with participants living in 
the city of Augsburg and 16 surrounding towns and vil-
lages. The discovery dataset comprised 1799 individu-
als from the KORA F4 survey (all with genotyping data 
available) conducted during 2006–2008. Fasting blood 
samples were drawn into serum gel tubes in the morn-
ing. Further details are published elsewhere [54–56]. See 
“Array-based DNA methylation analysis” for the labora-
tory analysis details.

Replication
As one replication sample, we used 500 subjects of the 
KORA F3 (50  % smokers, age comparable to KORA F4 
sample, 50 % females), originally selected for the smoking 
study by Zeilinger et al. [28, 56, 57].

KORA F4 and F3 are found to be completely independ-
ent with no overlap of study subjects. Also, no indication 
of population stratification was seen in numerous pub-
lications on the KORA studies [58]. For all studies, we 
obtained written consent from participants and approval 
from the local ethical committees.

The Avon Longitudinal Study of Parents and Children 
(ALSPAC) is a longitudinal birth cohort in the Bristol 
area of the UK (details in [59, 60]). A subgroup of 963 
ALSPAC children samples collected in adolescence was 
used for replication in this study. DNA methylation data 
were generated on this subgroup as part of the Accessi-
ble Resource for Integrated Epigenomic Studies (ARIES) 
[61]. Use of the data provided has previously been 
approved by the ALSPAC Ethics and Law committee. 
Please note that the study website contains details of all 
the data that are available through a fully searchable data 
dictionary (http://www.bris.ac.uk/alspac/researchers/
data-access/data-dictionary/).

A third replication sample was from a nested case–
control study from the Italian EPICOR2 study [part of 
the European Prospective Investigation into Cancer and 
Nutrition (EPIC) Study]. The study sample includes 292 

myocardial infarction (MI) cases and 292 matched con-
trols that were healthy at recruitment, but diagnosed for 
nonfatal MI during the follow-up. Blood samples were 
collected at the time of enrollment. Further details are 
published in Fiorito et al. [62].

Array‑based DNA methylation analysis
Genome-wide DNAm patterns of the 1814 KORA F4 
samples (1  µg DNA from whole blood) were assessed 
using the Infinium HumanMethylation450 BeadChip 
Array (Illumina) as described elsewhere [28]. Also in the 
replication studies, DNAm was measured with the 450-k 
chip.

The percentage of methylation of a given cytosine is 
reported as a beta-value, which is a continuous variable 
between 0 and 1, corresponding to the ratio of the meth-
ylated signal over the sum of the methylated and unmeth-
ylated signals.

Technical validation of the method has been reported 
elsewhere [63].

Data preprocessing and quality assurance
Raw methylation data were obtained from GenomeS-
tudio software (Illumina, version 2011.1) methylation 
module (version 1.9.0) and preprocessed as proposed 
by Touleimat and Tost [64] with default option and an 
in-house updated list of CpGs with SNPs in the probe-
binding regions, followed by beta-mixture quantile nor-
malization (BMIQ) as a normalization step to correct for 
the InfI/InfII distribution shift of the beta-values ([65], 
using R-package wateRmelon, version 1.0.3 [66]). After 
the quality control, 391,885 CpGs for 1799 samples were 
eligible to enter the analysis. Details on data normaliza-
tion can be found in Wahl et al. [67].

For the ALSPAC study, ARIES DNA methylation data 
version 1, released in October 2013, was used. Dur-
ing quality control, samples were excluded if they had 
detection p value ≥0.01 at more than 20  % probes, or 
unexpected mismatches with SNP genotype data or sex 
information. Finally, for normalization, the Touleimat 
and Tost method implemented in R-package wateR-
melon, version 1.0.3 was applied with default parameters.

Similar procedures as in KORA were done in the EPI-
COR study, resulting in another 788 CpGs being excluded 
from the given KORA F4 hits.

Statistical analysis
We defined the sex-methylation association SMA at each 
CpG site to be the Pearson’s correlation between sex and 
the methylation beta-value. Prior to association testing, 
methylation measurements were adjusted across the 
study sample by taking the residuals of the linear regres-
sion with the following covariates: Age, BMI, smoking 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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behavior, alcohol intake, triglycerides, total leucocytes, 
plate, HDL, LDL, physical activity, diabetes, myocardial 
infarction, and estimated white blood cell proportions. 
Specifically, the proportions of neutrophils, CD4+ T, 
CD8+ T, B cells, monocytes, and granulocytes were esti-
mated according to Houseman et  al. [68]. Experimental 
96-well plates were represented by dummy variables. The 
Manhattan plot was drawn with an adapted version of 
the drawing function in the qqman package for R [69].

Allosomal cross‑hybridization
Previous studies reported a subset of the 450k probes 
to be cross-reactive in silico [70, 71]. Cross-hybridiza-
tion with the sex chromosomes leads to false discover-
ies as the measured methylation value is composed of a 
mixture of values from the target location and from the 
sex-chromosome, which obviously differs between sexes. 
Price et al. showed that probes with high homology to the 
sex chromosomes have a significant enrichment of sex-
methylation associations [71].

We repeated the computational analysis of Price et al. 
in order to validate that the 450k probes have no corre-
lation between allosomal homology and sex associations 
in our dataset. For each autosomal probe, we defined the 
cross-hybridization value to be equal to the number of 
matches between each probe and its best alignment to 
the allosomes. The cross-hybridization value equals the 
number of matching bases between each probe sequence 
and its best alignment to chromosomes X and Y. We 
observed that the highly significant SMAs tend to have 
high cross-hybridization values (see Additional file  6). 
We therefore removed all CpGs from the analysis with 
cross-hybridization values larger than a threshold of 40 
(the point at which enrichment of SMAs starts). After 
the removal of these CpGs, the correlation between the 
SMA values and the cross-hybridization values was not 
statistically significant (p values were calculated empiri-
cally using 3000 permutations). This process resulted 
in the removal of 12,260 probes, of which 568 had sig-
nificant sex associations (4.63 %). To be conservative, we 
additionally removed all nonspecific probes suggested 
by price; 391,885 CpGs were finally considered as safe 
probes.

Replication and meta‑analysis
For replication of the significant CpGs from the discovery 
step, three studies were included: KORA F3, ALSPAC, 
and EPICOR. Association analysis was performed as 
described for the discovery sample. Covariates were 
included as follows: In KORA F3, all of the discovery 
covariates were included. In ALSPAC, age, BMI, total 
cholesterol, HDL-C, LDL-C, tissue contents estimated by 

the Houseman algorithm [68], and the bisulfite conver-
sion batch (BCD plate) were included. In EPICOR, the 
discovery covariates were complemented with the center 
of recruitment (categorical: Torino, Varese, Napoli, 
Ragusa). Results from the three replication studies were 
meta-analyzed using the R function metacor (with default 
settings, i.e., Fisher’s z-transformation of Pearson’s rho 
values, random effects model). Significance level in the 
meta-analysis was Bonferroni-corrected for 10,222 tests 
corresponding to the number of CpGs analyzed in all 
replication cohorts (i.e., 4.89E−06).

Validation in monocellular tissue (buccal epithelium cells)
From the GEO database, we chose the largest publicly 
available dataset from a population-based study with 
even sex distribution and monocellular tissue as study 
sample [18]. In that study, the Illumina Infinium Human-
Methylation27 BeadChip v1.2 was applied on buccal epi-
thelium cells, and the data is publicly accessible at NCBI 
GEO database [72], Accession GSE25892.

The following preprocessing steps were already com-
pleted: Extraction of raw intensities using GenomeStu-
dio v2010.1, background normalization by subtracting 
averaged negative probe intensity from signal A and 
B, quantile normalization, obtaining beta-values, and 
checking CpG site-wise call rate (CpGs removed if 
>50 % of data points had bad quality). According to our 
data preprocessing in KORA, we additionally set beta-
values to missing where respective detection p values 
were 0.01 or below, excluded samples with call rates of 
≤80 % (there were none). BMIQ was not necessary since 
it is designed to correct the InfI–InfII distribution shift, 
which is not an issue when 27k is used, where all CpGs 
are of InfI design.

We obtained a subset of 22,773 CpG sites, which were 
measured in both experiments, and passed the above 
quality-control steps. We tested for SMAs in the buccal 
dataset with a linear model as no other covariates were 
available. We used a conservative Bonferroni correction 
for 27k hypotheses throughout this analysis.

Test for enrichment of SMAs in CpG locations
CGI location information was taken from UCSC genome 
browser CGI specification which was available from Illu-
mina’s probe description file. Since test for enrichment 
assumes independency (both the hypergeometric test 
and the Spearman correlation), and since CpG sites are 
locally correlated, we preprocessed the data by analyz-
ing a random subset of the sites which was obtained by 
picking each site with probability 0.2. Applying this filter 
resulted in 78,734 CpG sites, 231 of these had significant 
SMA after replication.
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Enrichment of SMAs in imprinted genes
We tested a known set of imprinted genes for enrichment 
of significant SMA CpGs. For that purpose, we down-
loaded a list of 59 genes from ‘Geneimprint’ by Dec 2013 
[73] and selected only those with status ‘imprinted’ in 
Homo sapiens [74, 75]. Of these genes, 48 had CpG sites 
that passed quality control. For each gene as to Illumina’s 
Infinium 450k annotation, including these 48, we picked 
the most significant CpG sites in our analysis, resulting 
in 19,170 sites. We considered the vector of p values for 
these sites, and then considered another binary vector of 
length 19,170, where an entry is 1 if the corresponding 
gene is an imprinted gene. Spearman correlations were 
calculated for the pairs of vectors.

GO‑enrichment analysis
An enrichment analysis for gene ontology (GO) terms 
was performed with all CpGs analyzed in KORA F4, 
resulting in 19,170 annotated genes (according to Illumi-
na’s annotation file). GO is an ontology of defined terms 
representing gene product properties [76]. According 
to Geeleher et al. [77], we applied the R-package GOseq 
[78], originally developed for expression analysis, to 
determine different probabilities of detecting a gene due 
to different CpG probe number per gene. Therefore, we 
defined those CpGs as differentially methylated which 
were replicated in the meta-analysis, looked at the anno-
tated genes, and used the number of probes per gene as 
variable for weighting the results. Results were Bonfer-
roni-corrected for 16,233 tests according to the number 
of genes that were processed by the GOseq function.

Enrichment in sex hormone‑related genes
We created a list of genes involved in sex hormone bio-
synthesis, transport, receptors, genes of other hormones 
with sexual dimorphisms, as well as genes known to be 
involved in disorders of sexual disorders (identified by 
an OMIM search [22]), excluding those located on X and 
Y chromosomes (Additional file  4). We then compared 
those to our meta-analysis hits with a hypergeometric 
test.

mRNA expression analysis
Gene expression data were available for 731 KORA F4 
subjects and were analyzed using the Illumina Human 
HT-12 v3 Expression BeadChip. The procedures are 
described elsewhere [79]. For all CpGs surpassing the 
threshold for statistical significance in the meta-analysis, 
mRNA expression levels were checked as expression of 
genes in 1 Mb distance to each CpG site as linear combi-
nation of sex effect and DNAm effect with the same co-
factors as in the main analysis. The significance level of 
8.55E−08 was calculated as 0.05 divided by the number 

of combinations between CpGs and genes, which was 
585,031.

Software
Analyses were performed using Matlab and the Statistics 
Toolbox, Release 2013b, The MathWorks, Inc., Natick, 
Massachusetts, United States. Preprocessing and qual-
ity control steps as well as replications, meta-analysis, 
expression analysis, and GO and sex hormone-related 
gene-enrichment analyses were done using R, versions 
2.15.3 3.0.1, and for the Manhattan plot version 3.1.3 [80].
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epigenome‑wide association study; SMA: sex methylation association.
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