Twenty years of enamel matrix derivative: the past, the present and the future.

Miron RJ1,2, Sculean A3, Cochran DL1, Froum S4, Zucchelli G5, Nemcovsky C6, Donos N1, Lyngstadaas SP8, Deschner J9, Dard M10, Stavropoulos A11, Zhang Y12, Trombelli L13, Kasaj A14, Shirakata Y15, Cortellini P16, Tonetti M17, Rasperini G18,19, Jepsen S20, Bosshardt DD2.

Abstract

BACKGROUND: On June 5th, 2015 at Europerio 8, a group of leading experts were gathered to discuss what has now been 20 years of documented evidence supporting the clinical use of enamel matrix derivative (EMD). Original experiments led by Lars Hammarström demonstrated that enamel matrix proteins could serve as key regenerative proteins capable of promoting periodontal regeneration including new cementum, with functionally oriented inserting new periodontal ligament fibres, and new alveolar bone formation. This pioneering work and vision by Lars Hammarström has paved the way to an enormous amount of publications related to its biological basis and clinical use. Twenty years later, it is clear that all these studies have greatly contributed to our understanding of how biologics can act as mediators for periodontal regeneration and have provided additional clinical means to support tissue regeneration of the periodontium.

AIMS: This review article aims to: (1) provide the biological background necessary to understand the rational for the use of EMD for periodontal regeneration, (2) present animal and human histological evidence of periodontal regeneration following EMD application, (3) provide clinically relevant indications for the use of EMD and (4) discuss future avenues of research including key early findings leading to the development of Osteogain, a new carrier system for EMD specifically developed with better protein adsorption to bone grafting materials.

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

KEYWORDS: EMD; Emdogain; Osteogain; enamel matrix derivative; enamel matrix proteins; intrabony defect; periodontal regeneration

PMID: 26987551

DOI: 10.1111/jcpe.12546